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charge-density wave and superconductivity 
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Institute of Applied Physics, 277028 Kishinev, USSR 
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Abstract. The effects of Geviation from the half-filling of the conduction band ( p  # 0) and 
magnetic field on the coexistence of superconductivity (SC) and the charge-density wave 
(CDW) in a quasi-one-dimensional system are investigated. The behaviour of the super- 
conductingorder parameter A, and dielectricorder parameter Apas functionsof temperature 
essentially depends on the theory parametersp = Tso/Tpo, p and the external magnetic field 
Ho, In particular, it is possible to increase the superconducting transition temperature T, 
as the magnetic field grows. The spin magnetic susceptibility and penetration depth are 
calculated in the mixed SC+CDW phase and it is shown that their temperature dependences 
essentially differ from the BCS theory both qualitatively and quantitatively. 

1. Introduction 

There has been long and thorough research, both experimentally and theoretically, of 
those substances which exhibit owing to the peculiarities of their crystal lattice a strong 
anisotropy of electroconductivity and it allows one to treat them as quasi-one-dimen- 
sional materials. 

Such substances are, in particular, the organic conductors and chain compounds [l- 
51. They are interesting, first of all, because of their unusual properties. While they 
behave as metals at high temperatures, they undergo a transition to the dielectric state 
of the charge-density wave (CDW) and spin-density wave (SDW) at low temperatures. 
The transitions to these states occur while ‘nesting’ is present, when there are congruent 
parts on the Fermi surface which could be matched by a parallel transfer of the vector 

Because there is always ‘nesting’ in a one-dimensional system, in a strongly aniso- 
tropic nearly one-dimensional system transitions to CDW and SDW states are possible at 
Q = 2KF. The question about which of these transitions will occur is determined by the 
condition in [6,7], i.e. by the relation between theparametersg, of the electron-phonon 
interaction and the magnitude V ( Q )  of the Coulomb interaction. Wheng, > N(O)V(Q) 
a transition to the CDW state occurs. Periodic stationary shifts of the electrons with the 
wavevector Q appear and on the congruent parts of the Fermi surface a dielectric gap 
appears. WhengQ < N(O)V(Q) the system passes into a magnetically ordered SDW state. 
In this case the periodic effective exchange magnetic field acts on the electrons and on 
the congruent part of the Fermi surface a dielectric gap will also appear. In accordance 

Q .  
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with this a Peierls transition is observed, for instance, in the chain compounds TaS3, 
NbS3, K0,3M003 [8-101 and also in organic compounds such as tetracyanoquinodime- 
thane (TCNQ) [l, 111. A transition to the SDW state occurs in rare-earth molybdenum 
sulphides ( R E ) ~ , ~ M O , S ~  (RE = Tb, Dy, Er) [5], and in the organic conductors 

In several theoretical papers in which the Peierls instability is considered [ 12-17] the 
investigations are carried out within the mean-field approximation. When doing this, 
only the case of one-dimensional systems with a half-filled conduction band (p = 0, 
where p is the Fermi energy as measured from the middle of a conduction band) is 
considered. In such systems a wave of shifts and the CDW connected with the latter with 
the wavevector Q = 2KF = n / d  ( d  is the lattice constant) develop. Meanwhile on the 
Fermi surface a dielectric gap appears. 

An investigation beyond the framework of the mean-field approximation is carried 
out in [MI, where the fluctuations in the framework of the Ginsburg-Landau statistical 
approximation are taken into account. This theory is valid when 2KF # x / d .  It is con- 
cluded that only when T < iTp ( Tp is the temperature of the Peierls transition in the 
mean-field approximation) does a Peierls superlattice appears in the system and the 
density of states is near that obtained within the mean-field approximation. 

A detailed review of papers covering the Peierls instability in quasi-one-dimensional 
systems with a half-filled band is given in [ll]. In this review, in particular, the role of 
the Coulomb interaction of electrons in a Peierls transition is discussed as well as the 
role of commensurability and incommensurability, of fluctuation and so on. 

The influence of the deviation from the half-filling of the band p on various properties 
of one-dimensional conductors was first considered in [19]. It was indicated that in the 
mean-field approximation, when the Umklapp processes (the periodicity of the lattice) 
are not taken into account, the wavevector of the CDW Q = 2KF for any p ,  as in the case 
of the jellium model [13]. Taking into account the Umklapp processes at p < pc = 1.056 
Tpo, where Tpo is the temperature of the Peierls transition at p = 0, does not alter the 
overall picture, i.e. a CDW with the wavevector Q = 2KF is established in the system. 
However, at p > p c  taking into account the Umklapp processes gives rise to a stable CDW 
state only at Q # 2KF. In this case a CDW with a wavevector Q = 2KF + q ,  q 4 KF 
appears. Then the dielectric gap appears not exactly on the Fermi level (depending on 
whether Q # 2KF) and one has a state with free carriers under the Fermi surface, which 
could form Cooper pairs. 

In strictly one-dimensional systems the long-range ordering is attenuated by growing 
fluctuations near the transition temperature [18,20]. However, the results of the theor- 
etical papers [13,17,19] can be applied to describe the properties of quasi-one-dimen- 
sional systems. The three-dimensional lattice with an evidently expressed anisotropy is 
meant here, when the electrons may move only along a single direction. In such systems 
the fluctuations may be strongly suppressed and display themselves only in a narrow 
interval of temperatures near Tp. There are no doubts about thevalidity of the application 
of the quasi-one-dimensional model for the description of properties of strongly aniso- 
tropic systems at T < Tp when the fluctuations are insignificant. Thus, in K0,3M003 the 
fluctuations vanish below T = 0.9 Tp [ 10,211. 

As to the transition temperature Tp, it seems that it may differ from that determined 
within the framework of more accurate calculations when the interactions of linear 
chains and fluctuations are quantitatively taken into account. 

The CDW in quasi-one-dimensional conductors with p # 0 turns out to be unstable 
with respect to the Cooper pairs. The question of the coexistence of superconductivity 

(TMTSF)*x (x PF6, ASF6, SbF6) [6,7]. 
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(sc) and CDW in these systems has been investigated in [22]. This was limited to the case 
of weak superconductivity on the background of the CDW state and proved that the 
conditions for the coexistence of sc and CDW strongly depend on the peculiarities of the 
excitation spectrum of the dielectric phase and appear only at p # 0. With increase in p 
( p  > pc < W, where W is the half-width of the band) a transition to the CDW state 
occurs with Q = 2K, + q ( q  KF) and the quasi-one-dimensional system passes to a 
qualitatively new state, when ordering occurs to the dielectric type, yet without the gap 
in the excitation spectrum. This circumstance gives rise to some interesting peculiarities 
in the behaviour of the magnetic susceptibility as a function of temperature in the SDW 
or CDW state [23]. 

Because the condition p # 0 in real systems is rather probable, it is of interest to 
investigate more thoroughly the influence of p on the low-temperature properties of 
quasi-one-dimensional systems as well as on the coexistence of sc and CDW. Our paper 
is dedicated to this matter and to the investigation of the influence of the magnetic field 
on the mixed sc + CDW phase. The investigations are carried out in the mean-field 
approximation. The work in [24,25] may serve as a justification of this; in [24,25] it was 
shown that the behaviour of a quasi-one-dimensional system with two parameters of 
long-range order (sc and CDW) in the mean-field approximation is qualitatively consistent 
with the treatment on the basis of the static approximation of Ginsburg and Landau, 
allowing one to take into account the fluctuations. 

In the following the system of equations for two order parameters-the super- 
conducting order parameter As and the dielectric order parameter Apdetermining the 
state of the system in the magnetic field H o  is obtained, the difference 6 F  = F(As, Ap, 
H,) - F(0, Ap7 H,) in the free energies is calculated, the wavevector Q of the CDW is 
optimally determined for the given p, H o ,  the magnetic susceptibility and the penetration 
depth of the magnetic field in the mixed sc + CDW phase, and the temperature depen- 
dence of the above-mentioned magnitudes at various values of the theory parameters is 
investigated. 

2. The Hamiltonian of the system and the main equations 

We start with a Frolich-like Hamiltonian [22] to which the Hamiltonian of the electron- 
magnetic field interaction is added. This Hamiltonian in the mean-field approximation 
may be reduced to this form 

X = XO + X C D W  + X B C S  + xffo (1) 

where 

%O = ( & K  - p ) a K f , f f a K , a  
K ,  ff 

X B C S  = - As(aKftazKt + a - K J  
K 

xCDW = - AP(ai-Q,naK,a + ai,naK-Q,n) 
K ,  ff 

xff0  = - c. H o ( a , p a K f , , a K , p .  
K , ( Y , @  

Here X,, is the kinetic energy of the conductive electrons; XBcs and XcDw are the 
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operators responsible for the sc and the Peierls instability, respectively; Y e H o  is the 
interaction of electrons with the external magnetic field; a:. and aK,& are creation and 
annihilation operators, respectively; b is the Pauli matrix. 

The superconducting order parameter A, and the dielectric order parameter Ap are 
determined by the relations 

where (qQ) is the amplitude of the wave shifts; wo(Q) is the phonon frequency; g, and 
g, are the BCS and effective Peierls interaction constants respectively. 

Excluding the amplitude (qQ) of the wave shifts from ( 3 )  and using the equation of 
motion for the phonon averages (see [261) one obtains the self-consistent system of 
equations for the order parameters As (equation (2)) and Ap: 

F!K,K and G;;"-Q,K are the Fourier components of the thermal Green function defined 
by 

F!K,K(z - z') = - (TU'KJ ( z ) u i t  (z')) 
( 5 )  

GFi,(T-T')  = - ( T U K ~ ( T ) U ~ , , , ( ~ ' ) ) .  

On the grounds of the Hamiltonian (1) for the Green functions G z Q , K ,  GFK, F ! K , K ,  we 
obtain 

Assume that the band energies are given by 

& K  = - w cos(ik;d). (8) 
Inserting equations (6) into the system of equations (2) ,  (4) and integrating over energy 
as was done in [27], we obtain the system of equations for determination of the order 
parameters As and Ap: 

(9) 
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Table 1. The results obtained by solution of the system of equations (12). 

HOITPO PITM v ~ I T M  TdTm HOITPO PITPO V&TPO TPITPO 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 0.0 1.0 0.2 
0.5 0.0 0.94 0.2 
1 .o 0.0 0.68 0.2 
1.073 0.059 0.56 0.2 
1 .08 0.354 0.54 0.3 
1.09 0.520 0.52 0.3 
1.1 0.601 0.50 0.3 
1.2 0.977 0.41 0.3 

1.08 0.134 0.54 
1.09 0.359 0.51 
1.1 0.553 0.49 
1.2 0.966 0.39 
1.08 0.0 0.54 
1.09 0.196 0.51 
1.1 0.452 0.48 
1.2 0.943 0.36 

&7 = ( E + j d 2  - A$ E = u(icon + H O ) *  - A:. 

T,, and Tpo are the temperatures of the superconducting transition (in the absence of 
dielectric order) and the dielectric transition (in the absence of superconductivity and 
when 1.1 = 0). 

At Q # 2KF(qq # O), renormalisation of the parameter occurs, namely the par- 
ameters p+ = p + q4 and p- = 1.1 - qs appear. The difference between ,U+ and p- arises 
because the Umklapp processes in the quasi-one-dimensional system are taken into 
account. 

Following [19,22], the wavevector Q of the CDW (or qq)  is determined from the 
condition of maximality of the Peierls transition temperature Tp. From equation (10) at 
As = 0, Ap + 0, one obtains, in order to determine the maximal Tp and the corresponding 
qq, the system of equations 

where 

"= Ifr 1 a =  * 1. 

It should be noted that such an approach to determine Q at the point T = Tp is equivalent 
to the approach considered in [28], where Q is determined from the condition of the 
free-energy minimum near the transition temperature Tp. The results of the numerical 
solutions of the system of equations (12) are given in table 1. It is easy to see from this 
table that, when the magnetic field increases, pc also increases and the system goes into 
a phase with Q # 2KF (q ,  # 0). Therefore at p # 0 the magnetic field contributes to the 
stabilisation of the CDW state with Q = 2KF. One can understand this result by comparing 
equation (12) at qq = 0 with the same equation at H ,  = 0. One obtains mathematically 
equivalent equations. Therefore, H ,  plays the same role as qq, i.e. it stabilises the CDW 
state. That is why at Ho # 0, for the transition into the state with Q # 2KF to occur, it is 
required that p: (H,)  > p: (0) = pc (here 1.1; (H,)  is the value of p at which the solution 
of the system of equation (12) with qq # 0 appears). Thus the statement in [19] that in 
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the magnetic field a transition into the state with q # 0 is possible at p: (H,)  < p, has no 
grounds. 

To understand the role of H o ,  let us consider the electronic density of states N ( p )  at 
the Fermi surface obtained from the imaginary part of the function G?K(Qnu) (equation 
(6)): 

At q4 = 0, one has the condition lp - HOl S lp + Ho/  < A which corresponds to the fact 
that the dielectric gap on the Fermi surface appears, and the conditions 
/ p  - Hol < A < Ip + HoI and A < lp - Hol =z lp + Hol correspond to the appearance of 
a gapless CDW state. These results are reminiscent of the situation in the quasi-one- 
dimensional antiferromagnetic superconductor [29] when in a certain range of values of 
the magnetic field a gapless state appears and as a result the magnetic field gives rise to 
sc. 

3. Free energy and magnetic susceptibility of the system 

To calculate the difference between the free energies of the superconducting and dielec- 
tric phases we use the formula 

One can represent equation (9) as 

Inserting equation (16) into equation (15) and integrating over A,', we obtain 

Let us now determine'the magnetic susceptibility. With this aim we represent the spin 
magnetic momentum of the system in the region of small magnetic fields in the form 

M = 2H,No + T X  2 aG&(iw,) 0 =  +- 1. 
n K,o 

Inserting into equation (18) the corresponding Green function (6) and carrying out the 
integration over the energy for magnetic susceptibility x = M / H o ,  we obtain 
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4. Penetration depth of the magnetic field 

To determine the penetration depth of the magnetic field, we shall suppose that the 
vector potential A is parallel to the nesting vector Q and define the electromagnetic 
kernel by the relation j = - Qi@, where j is the induced current. The calculation of 
is reduced to the determination of the thermodynamic causal Green function of the 
current operator:in the mixed sc + CDW phase. To calculate it, one uses the procedure 
developed in [29,30]. After integrating over energy for the penetration depth 
il = Q[”* of the magnetic field, we obtain 

ilo is the penetration depth of the magnetic field in the usual superconductors when 
T=O.  

5. Numerical solutions and discussion of results 

The coexistence of the sc and of the CDW state is determined by the condition As # 0 
and Ap # 0, which corresponds to the non-zero solution of the system of equations (9), 
(10). Together with this, it is necessary that the free-energy difference 6 F =  
F(Ap, A?) - F(Ap, 0) determined by equation (17) be a negative quantity. This cor- 
responds to the fact that the appearance of sc on the background of the CDW state is 
energetically convenient. 

In the considered model there are two independent parameters: p = Ts,/Tp, and 
p = p/Tpo. The value of q9 is determined from equations (12). A quasi-one-dimensional 
system is considered in the magnetic field H o  at the temperature T.  The numerical 
solutions of the above-mentioned system of equations carried out for various values of 
1-2 andp throughout the temperature range from 0 to Tp are given in figures 1 and 2. 

In figure l ( a )  the dependence of the order parameters As/Aso and Ap/Apo on tem- 
perature at p = 1.073 a n d p  = 0.6 is given. Curves labelled A-C are related to As/Aso 
and curves labelled A’-C’ to Ap/Apo. In this figure, curves A and A’ correspond to 
p = Ho/Tpo = 0 ,  f j9  = q4/Tpo = 0.059, curves B and B’ t o p  = 0.2, f jq  = 0, and curves C 
and C’ p = 0.3, fjq = 0. 

In figure l(b) the dependences of the order parameters A,/ASo and Ap/Apo as func- 
tions of temperature at p = 0.57 and p = 1.075 for the values p = 0 ( f j 4  = 0.205) and 
p = 0.2 ( f j q  = 0) are presented (curves A and A’ and curves B and B’, respectively). 
Here at p = 0 the sc appears on the background of a dielectric state at the point T,, = 
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1 .o 

0.8 

E a 
0.6 

0 

a“ 2 0 . 4  

0 , 2  

0 

0 0.2 0.4 0.6 
T’TPll 

c 

Figure 1. The temperature dependences of the 
superconducting order parameter As/AsO and 
dielectric order parameter Ap/Apo at various 
values of magnetic field p as explained in the text. 

0.23Tp0 and is suppressed by ‘dielectrisation’ at the point Ts2 = 0.53Tp0. A return to the 
dielectric state occurs. As p increases, this effect disappears and sc exists throughout 
the temperature interval from Ts3 = 0.56Tp0 to 0, i.e. the magnetic field restores the 
superconducting phase within this temperature interval. 
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- lo-’ v(d’ 

T’TP, 
0.2 0.4 0.6 

Figure 2. The temperature dependences of the 
free-energy difference at p = 0 for cases pre- 
sented in figures l(a), l (b)  and l(d). 

In figure l(c) the temperature dependences of the order parameters AS/Aso and Ap/ 
A,,, at p = 0.6, p = 1.068 for p = 0 and 0.27 (f jq = 0) are shown (curves A and A‘  and 
curves B and B’ , respectively). 

In figure l(d) the same dependences are shown at p = 0.35, fi  = 1.1 for values of 
p = 0 ( f j q  = 0.601) and p = 0.2 ( f j q  = 0.553) (curves A and A‘  and curves B and B‘, 
respectively). At the point T = T, the superconducting parameter sharply increases and 
thereby suppresses the parameter Ap.  

Figure l(e) gives the dependences of the parameters As/Aso and Ap/Apo on tem- 
perature at p = 0.38 and p = 1.1 for values p = 0 ( f j q  = 0.601) in curves A and A’ and 
for p = 0.2 ( f j ,  = 0.553) in curves B and B‘. From this figure, in the region of low 
temperatures the ‘dielectrisation’ is completely suppressed and the system is in the 
superconducting phase. 

The corresponding temperature dependences of the difference 6 F  in free energies 
at p = 0 is calculated from (17) and the system of equations for the cases in figures l (a) ,  
( b )  and (d) are presented in figure 2. These results are in agreement with conclusions 
about the possibility of coexistence of sc and CDW in a certain temperature range. 

As follows from the results obtained above, the behaviour of the system varies greatly 
and depends essentially on the values o f p  and p.  There are two different regions in the 
ranges of p and p in which the non-zero solutions As and A, of the system of equations 
(9), (10) exist. In the first region the values ofp  and ,E are in the intervals0.56 15 p 6 0.63 
and 1.048 IS p 15 1.076. The characteristic features of this region are as follows. 

(i) A, < A p  throughout the temperature region 0 < T < T,. 
(ii) There is an increase in the value T, when the magnetic field increases. 
(iii) With increase in p ,  As increases including when T = 0 only for ii > pc = 1.073. 

As is known, the magnetic field destroys the Cooper pairs in the usual super- 
conductors. However, in the present case, when dielectric-type ordering takes place and 
the magnetic field is sufficiently weak, it influences the quasi-particle energy spectrum 
rather than destroys the Cooper pairs. Such unusual behaviour of the system’s low- 
temperature phase in a magnetic field in our view is conditioned by the fact that in going 
from the initial metal state to the CDW state a shift in the dielectric gap with reference to 
the Fermi level (since Q # 2KF) occurs in the energy spectrum of the system. Therefore, 
along with the electrons penetrating to the conductive band owing to their thermal 
excitation through the gap, the additional electrons that turn out to be above the gap 
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owing to such restructuring of the energy spectrum also take part in the superconducting 
ordering. The position of the dielectric gap in the energy spectrum is defined by the 
parameter qq. When qq = 0 (commensurable phase), the gap forms in the middle of the 
energy band and, when qq # 0 (incommensurable phase), it is shifted towards the Fermi 
level of the initial metal system. The magnetic field affecting the system suppresses the 
incommensurable phase, namely with increasing p the parameter q4 +. 0. As a result 
the number of electrons above the gap increases and therefore the order parameter As 
increases even at T = 0 as p increases until qq = 0 while Ap decreases (see figures l(a) 
and l (b) ) .  Also the magnetic field promotes the penetration of the electrons which 
appear owing to the thermal destruction of the electron-hole pairs through the dielectric 
gap which arises in the conductive band. When the values of the parameter p ,  charac- 
terising the strength of the interaction of Cooper pairs, are large enough, these electrons 
can contribute to the superconducting ordering. As a result, Ts increases. 

The appearance of a gapless state in a definite region of values of p or external 
magnetic field H o  as in the case of the quasi-one-dimensional antiferromagnet [29] is 
essential for superconductivity to appear. To explain the appearance of super- 
conductivity in a ferromagnet in the region of strong external magnetic fields [3i] the 
idea in [32] about the compensation of the internal field by the external field has been 
used. 

The situation in antiferromagnetic and ferromagnetic systems differs from that 
considered in our paper. In the case of the magnetic system, as a rule, there are two 
groups of electrons: one is responsible for the sc and the other for magnetism. In our 
case there is a group of electrons which is responsible for sc and for CDW. In consequence 
the order parameters A, and Ap are determined by the system of equations (9), (10) 
and the competition of coexistence of these two orderings is strict. A system state of 
semiconducting type but without an energy gap in the excitation spectrum occurs only 
in the second region (0.1 =s p =s 0.45 and 1.09 6 p 6 1.4) and therein the mechanism of 
destruction of Cooper pairs in a magnetic field is more essential. Thus, T, decreases as 
the magnetic field increases. As As and Ap are mutually dependent quantities, the 
decrease in A, gives rise to the increase in Ap with increase in the magnetic field (figures 
l(d) and (e)). 

In figure 3(a)  the temperature dependence of the spin magnetic susceptibility x /xo  
in the CDW state (the chain curve corresponds to p = 0 and the broken curve t o p  = 1.075) 
and in the mixed sc + CDW phase (the full curves correspond to the same parameters as 
in figures l(b) and l(c)). A comparison of the chain curve with the broken curve shows 
that on increase in p the slope of the curve in the above dependence changes. In addition 
to this, the whole curve is shifted to the left which corresponds to the appearance of x # 
0 at a lower temperature than in the case p = 0. Thus, in the first region of parameters 
p and p (both in the CDW state and in the mixed phase) at T = 0, x = 0 and increases 
rapidly with rise in temperature. 

In figure 3(b) the dependence of magnetic susceptibility corresponding to the second 
region of the parametersp and p on temperature is presented. The broken curve refers 
to the case of the CDW state at p = 1.1 and the full curves refer to the mixed phase at the 
parameter values corresponding to figures l(d) and l(e). One has that in the absence of 
sc at point T = 0, x # 0. The gapless CDW state occurs here. In the mixed sc + CDW phase 
at point T = 0, x = 0 and rapidly increases with rise in temperature. 

Thus, one obtains that the behaviour of the quantity x as a function of temperature 
strongly depends on the parameter p both in the CDW state and in the mixed phase. In 
the CDW state the rise in p is analogous to the influences of the impurity through the 
effect of destruction of the electron-hole pairs [20]. 
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r I 

0 0.2 0 . 4  0.6 

T/TPO 

Figure 3. Spin magnetic susceptibility x /xo  as a function of temperature TIT,,, for different 
cases as explained in the text. 

Figure 4. The temperature dependences of the 
quantity ( i / A O ) - 2  for different theory parameters 
as explained in the text. 

\ 
\ 
. 
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\ 
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/ 

I 
.,I.. 

0 0.2 0.4 0 6 0.8 1.0 

Hn I T S O  

Figure 5 .  The dependences of the supercon- 
ducting transition temperature T, as a function of 
magnetic field for different cases as explained in 
the text. 

In figure 4 the dependence of the quantity on temperature, obtained from 
the system of equations (9) and (lo), and from equation (20), is shown. Curve A in this 
figure corresponds to the casep = 0.38, f l =  1.2, curve B t o p  = 0.35, ,ii= 1.1, curve C 
top  = 0.6, ,ii = 1.073, and curve D t o p  = 0.57, p = 1.075. The broken line corresponds 
to the case of the usual superconductor. The comparison of the dependences in curves 
A-D with the broken curve shows that the behaviour of (A/AO)-* as a function of 
temperature can differ from the BCS case both qualitatively and quantitatively. In 
particular, curves C and D show the high values of the penetration depth and its slight 
dependence on temperature. 
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In conclusion, in figure 5 the dependence of the superconducting transition tem- 
perature T, on the magnetic field in the mixed phase is presented. Curve A corresponds 
to p = 1.1, p = 0.35 and curve B to f l =  1.073, p = 0.6. The broken curve corresponds 
to the case of the usual superconductor. As was mentioned above, along with the usual 
behaviour of the value T, as afunction of the magnetic field (curve A) we have its increase 
with increase in magnetic field up to the value T, = Tp at the point H o  = H,, = 0.53 T,, 
(curve B). At H ,  > H,,, we assume that T, = 0 in accordance with the condition about 
the possibility of formation of superconducting ordering on the background of the 
CDW state (Ts  .s Tp) [27]. As follows from this figure the paramagnetic critical field 
of the mixed sc + CDW phase is less than its value for the superconducting phase 
HP = 0. 84Tso = h,(O)/f i .  The increase in the critical temperature with increase in the 
magnetic field is observed in the region of values 0 < H o  < Hp. 

6. Conclusions 

The problem that we attempted to tackle was the investigation of the thermodynamic 
and magnetic properties of strongly anisotropic systems in the region of low tempera- 
tures. The investigations were carried out using the one-dimensional model and the 
slight deviation from the half-filling of the conductive band ( p  W ) ,  Umklapp processes 
being taken into account. This deviation is rather real in systems with overlapping 
energetic bands on the Fermi surface, when one of the bands undergoes restructuring 
through the transition to the CDW state and the second remains unchanged and acts like 
a reservoir. This situation may happen, for example, in the chain A15 compounds. In 
addition to this, p may change when an impurity is introduced into a strongly anisotropic 
system. In this case, to equations (9), (10) must be added one further equation, following 
from the law of charge conservation. 

It should be noted that the model in [33] with partial ‘dielectrisation’ of the Fermi 
surface is rather successful in describing the properties of the anisotropic systems. In 
fact this model may be regarded as a simplified two-band model, where one band is 
responsible for sc and the other for CDW when all constants of the effective electron- 
electron interaction (both intra-band and inter-band) are considered to be equal. In real 
systems it seems that one should take into account both the partial ‘dielectrisation’ and 
the effects connected with p # 0. For the case of sc and SDW, such investigations have 
in part been carried out in [34]. 

It should be noted also that in some cases the behaviour of the quasi-one-dimensional 
system considered above, for which in the mixed sc + CDW phase the parameters of the 
theory a rep  and p ,  is analogous to the behaviour of that in the model in [33] in which in 
the same phase the main parameters are p and N1/NZ (where N , / N 2  is the ratio of the 
densities of the electronic states in the corresponding parts of the Fermi surface). In 
connection to this the model considered above with p # 0 could be seen either as an 
alternative to the model in E331 or as an addition to it. 
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